Showing posts with label Pasteur. Show all posts
Showing posts with label Pasteur. Show all posts

Sunday, April 25, 2010

Trends in environmental microbiology with references from paper industry microbiology

The history of microbiology contains several eras with different targets. I will refer them in this way (based on my over 30 years experience as microbiologist and teacher of microbiology and biochemistry):

In the beginning, cultivation and observation of microorganisms was the main target. Doctors like Pasteur and Koch were very innovative and developed intelligent culture medias and vessels to perform very delicate experiments. The everlasting fight against pathogenic microbes was the primary target but Louis Pasteur started to help eg. wine producers to solve their quality problems, caused by microbes.

The combination of microbiology and biochemistry on the second era was very satisfying by solving questions concerning the huge amount of anabolic and catabolic processes included in microbial growth. More and more were also learned in the area of microbial ecology. Questions like "who? what? when? where? how? why?" were partially solved (ref. MADSEN,E.L. 2008. Environmental Microbiology. From Genomes to biochemistry. Blackwell Publishing).

"Third era" can be described by the novel methods to identify bacteria. Biochemical test kits (API etc.) were replaced by Fatty Acide Methylated Ester method (FAME) by Hewlett-Packard on 80's. After it, molecular biology methods, based on ribosomal RNA and DNA, helped to construct the development lines of microorganisms.

Today is the time of new era. We know the "family trees" of bacteria but we should now continue with environmental microbiology and microbial ecology to solve questions like "How, why, by whom and in which conditions will the raw materials of paper industry be biodeteriorated?", "How can we prevent these processes by setting the process conditions unsuitable for those biochemical processes?", "Can we prevent the growth of biofilms and slimes in an ecological way?", "How to prevent selectively the growth of toxin producers like Bacillus cereus in paper and board processes?", how to fight against Legionella in paper industry?".

Names are not the most important thing. Most important is, how the bacteria act in different ecological niches of a paper machine. This work has to be done by using simulations of paper processes which is possible by wet end simulators of research units (as an example: VTT in Jyväskylä, Finland) and laboratory/field instruments (like biofilm detectors in the processes or PMEU incubators by Samplion Ltd.).

The role of PMEU is getting more and more important because this method helps to detect microbial growth of different types (biofilms included) in a very short period of time as well as to test simultaneously the effects of alternative biocides in small-scale tests whose growth parameters match with the growth conditions in the real processes.

We are - and we shall - turn back to the era of Pasteur & Koch: the names are already known, and we shall now investigate, what the contaminating microbes are doing in the industrial processes and how to prevent losses of raw material, machine stops and poor quality of the products by simulating growth processes in small-scale tests, performed in the laboratory or in the field, by the machies themselves.

Friday, September 18, 2009

Competition between tube and colony count methods

All began with beef broth.

Dr. Louis Pasteur invented this method for the cultivation of diverse microbes. The famous "Swan Neck" trial was also performed with beef broth.

One of the first solid media for microbiological cultivations was the surface of a potato, presented by Dr. Robert Koch.

Colony counts began to be more and more favored by microbiologist because the colonies gave a chance to the immediate isolations of strains. The visual appearance of colonies on solid agars also help to identify the actors of the play, the species of a sample. Membrane filtration method also rise the popularity of colony count method, as well as the relatively good accuracy of colony count analyses, compared to the broth methods.

The role of the tube methods, however, has turned to be more important today. The limitations of the colony count method, correlated with the features of the samples (turbidity, toxic compounds etc.) and the slow growth (compared to the broth cultivation), are obvious. Testing of growth-affecting compounds like biocides are also easier and more reliable to perform in a solid media. When testing of those agents shall be done in the real environment (like the process water of a paper machine), the only alternative is the tube test. Detection of the response of stimulating and inhibiting agents can be done with various methods (photometry, colorimetry, turbidity, ATP Assay etc.) easily. Quantitative analyses of microbial counts can also be performed much faster with a (MPN) tube method than with the colony count method.

As a conclusion: colony count methods suit very well for purposes like the counting of CFU values as well as the selective cultivations of the total population to detect certain microbial groups. Testing of the effects of diverse growth factors (temperature, pH, biocidic and biostatic compounds etc.) should be performed with the tube methods, however. Growth on/in a solid medium does not correlate with the growth of the population in its original environment. Biofilm trials shall always be performed in liquids, never on solid media.

Various analytical tools have been developed for the measurement of the growth responses (pH, turbidity, impedance) automatically from the tubes and the most novel method, PMEU "mini-fermentor", gives the chance to perform all tests with the highest speed and - if needed - in the original samples to simulate the real growth environment of the microbial population. This method will be presented in PIRA Paper Conference, Barcelona, in next October.