Since the beginning of my blog, several years ago, I have collected some statistics about the questions which have been redirected from Internet search activities into my blog. The following "top three" is not actually statistically analyzed but still reviews my own opinion of the most important topics . The main issues, therefore, seem to be
* activated sludge
* hazardous bacteria (both pathogenic strains, like coliforms, in paper products and other specified pricrobiologyocess contaminants, like sulfate reducing bacteria, SRB's)
* prevention of biofilm and slime microorganisms
I have mainly focused on the effects of contaminating microbes in industrial processes. Biotechnological processes like production of beverages, antibiotics etc. have therefore excluded from my blog - the only exception is biological waste water treatment, however. I have also made a comparison between commercial bioreactors (fermentors) and paper machines because many similarities can be found when observing biotechnical productions and process water systems of paper and board machines!
Despite my current focus on the environmental and mining microbiology, I still follow news concerning paper industry microbiology. I am also planning a mobile mibi service for small waste water purification units, agricultural facilities as well as for pulp & paper industry.
You are very welcome to follow my blog if these issues interest You!
Showing posts with label slime. Show all posts
Showing posts with label slime. Show all posts
Sunday, June 16, 2013
Friday, July 24, 2009
The need of bacterial identification?
IM has discussed about alternative methods for the detection of hazardous or harmful bacteria with Dr. Elias Hakalehto.
It is most important to know the pathogens which will appear in patient samples. Clinical microbiologists shall know who are the enemies of the ill people: their metabolic capabilities, antibiotic resistence patterns etc. Their overall features are easy to find from literature or internet whenever the name of the species is known. This identification can be performed by selective cultivations on agar plates or in PMEU incubator, and further tests like microscopic examinations, API ID systems, immunological tests and/or PCR can be done to confirm the basic identification.
Paper mill is definitely another challenge for microbiologist. In some (relatively rare cases) the names of microorganisms are important to know: if the product shall have high hygiene quality (like LPB and other food-grade cartonboards) or questions about bioterrorism have been arisen (spore-forming Bacillus anthracis as an example). The occurrence of Legionella pneumophila is also a risk in the waste water treatment of paper industry today. Selective cultivations, either on plates or in PMEU, are the solid solutions for continuous microbiological control in those cases. PMEU is preferred because its speed (hours, compared to days with colony count analyses).
Papermakers shall focus more on the metabolic activities than the names of bacteria which they are living with in paper mills, however. Continuous inoculation of the paper production processes by contaminants, delivered with incoming lots of starches, mineral fillers, raw water, dry pulp etc. shall be controlled to avoid spoilage (amylolytic activity as an example), biofilm and slime growth, tastes and odours, spots and colours in the product etc. Because the wide range of bacterial species and their origin from the nature itself, clinical methods do not suit very well for this monitoring. There is no time to start labourous cultivations, pure cultures and identifications when the bacterial input continues day and night, "7/24". PMEU seems to be an excellent tool to check the basic features of process populations, their biocide resistence patterns included.
One important fact must also be taken into account. There are a lot of harmful microbes which actually cannot be cultivated on agar at all. One example are certain filamentous bacteria which may cause biofilm layers into the processes. They can be cultivated in some broths, however, but the usage of the original samples as the growth medium is the best way to detect them all. This can be done with ordinary mb laboratory equipment or with PMEU incubator.
Identification of bacterial species is still needed when the mapping of contamination routes into the processes is the subject of the study. IM will discuss about the microbiological mapping in his next posts.
It is most important to know the pathogens which will appear in patient samples. Clinical microbiologists shall know who are the enemies of the ill people: their metabolic capabilities, antibiotic resistence patterns etc. Their overall features are easy to find from literature or internet whenever the name of the species is known. This identification can be performed by selective cultivations on agar plates or in PMEU incubator, and further tests like microscopic examinations, API ID systems, immunological tests and/or PCR can be done to confirm the basic identification.
Paper mill is definitely another challenge for microbiologist. In some (relatively rare cases) the names of microorganisms are important to know: if the product shall have high hygiene quality (like LPB and other food-grade cartonboards) or questions about bioterrorism have been arisen (spore-forming Bacillus anthracis as an example). The occurrence of Legionella pneumophila is also a risk in the waste water treatment of paper industry today. Selective cultivations, either on plates or in PMEU, are the solid solutions for continuous microbiological control in those cases. PMEU is preferred because its speed (hours, compared to days with colony count analyses).
Papermakers shall focus more on the metabolic activities than the names of bacteria which they are living with in paper mills, however. Continuous inoculation of the paper production processes by contaminants, delivered with incoming lots of starches, mineral fillers, raw water, dry pulp etc. shall be controlled to avoid spoilage (amylolytic activity as an example), biofilm and slime growth, tastes and odours, spots and colours in the product etc. Because the wide range of bacterial species and their origin from the nature itself, clinical methods do not suit very well for this monitoring. There is no time to start labourous cultivations, pure cultures and identifications when the bacterial input continues day and night, "7/24". PMEU seems to be an excellent tool to check the basic features of process populations, their biocide resistence patterns included.
One important fact must also be taken into account. There are a lot of harmful microbes which actually cannot be cultivated on agar at all. One example are certain filamentous bacteria which may cause biofilm layers into the processes. They can be cultivated in some broths, however, but the usage of the original samples as the growth medium is the best way to detect them all. This can be done with ordinary mb laboratory equipment or with PMEU incubator.
Identification of bacterial species is still needed when the mapping of contamination routes into the processes is the subject of the study. IM will discuss about the microbiological mapping in his next posts.
Labels:
"Elias Hakalehto",
amylolytic,
API,
Bacillus anthracis,
bacteria,
biofilm,
identification,
Legionella,
PCR,
PMEU,
slime
Sunday, June 7, 2009
"Top Three" microbiological problems of paper machines
Certain types of microbiological problems in paper mills seem to be acute all the time. Looking back to last months, this may be "Top Three" among them:
* Microbiological spoilage of raw materials. This is an everlasting hazard for mineral and starch slurries, and the reasons are very easy to understand: both raw materials mentioned may contain high densities of bacteria (mainly aerobic sporeformers and actinobacteria), slurries containing starch are very nutritive growth media for different microbial species and the very challenging biocidic treatments of slurries (especially mineral ones), when inaccurate, can lead to the total spoilage of them.
* Growth of biofilm and production of slime. This problem seems to be connected to poor washing and boil-out programs which leave rests of biofilm inside the machine and give growth time for it because too long running periods. The chose of ineffective biocide and/or its insufficient dosing can also stimulate the activity of these trouble-makers.
* Microbial growth in the broke system. Especially big machines with large broke towers suffer of this problem. If the basic biocide program is insufficient and the retention times inside the towers are too long, aerobic population tend to increase the number of its cells to the level of 10 000 000 cfu/g or even higher. Consumption of oxygen by respirating bacteria leads to anaerobic conditions, redox potential will be dropped and the growth conditions for both fermentative and anaerobic bacteria turns to be excellent. Drop of pH, slime and spore formation, smells and odours - even the production of H2S and H2 - will be found in such situations.
There are some measures to prevent these hazards. Growth period of microbial population shall be kept as short as possible, the control of waterborne and bioflim bacteria shall be as rapid and frequent as possible and the bioside programs, intended in killing of raw material, process water and biofilm bacteria shall be evaluated more frequently.
A realistic and accurate way to control both process water and biofilm growth, as well as to evaluate biocide programs, is now available. The Finnish company SAMPLION Ltd is manufacturing and selling "Portable Microbiological Enrichment Unit", a "mini-fermentor" for 10 simultaneous tests in controlled conditions, to detect the failures of biocide programs in only hours (watesr) or days (biofilms). Some results of PMEU's paper industry applications will be published in next Spring - coming back to refer them later.
Some wrong ideas about the overdosing of biocides will also rise up frequently among publicity. Basically it is not a question of only the cubic meters of biocides consumed, however, The chose of most effective biocides for different areas of processes towards different problems, the dosing of these compounds, their type of action and some other factors play a major role when building an effective biocide program for paper machine. Overdosing of biocides is a problem only in cases, when the program does not work, and leads to the loss of money and the rise of biocide concentration in paper machine effluents.
* Microbiological spoilage of raw materials. This is an everlasting hazard for mineral and starch slurries, and the reasons are very easy to understand: both raw materials mentioned may contain high densities of bacteria (mainly aerobic sporeformers and actinobacteria), slurries containing starch are very nutritive growth media for different microbial species and the very challenging biocidic treatments of slurries (especially mineral ones), when inaccurate, can lead to the total spoilage of them.
* Growth of biofilm and production of slime. This problem seems to be connected to poor washing and boil-out programs which leave rests of biofilm inside the machine and give growth time for it because too long running periods. The chose of ineffective biocide and/or its insufficient dosing can also stimulate the activity of these trouble-makers.
* Microbial growth in the broke system. Especially big machines with large broke towers suffer of this problem. If the basic biocide program is insufficient and the retention times inside the towers are too long, aerobic population tend to increase the number of its cells to the level of 10 000 000 cfu/g or even higher. Consumption of oxygen by respirating bacteria leads to anaerobic conditions, redox potential will be dropped and the growth conditions for both fermentative and anaerobic bacteria turns to be excellent. Drop of pH, slime and spore formation, smells and odours - even the production of H2S and H2 - will be found in such situations.
There are some measures to prevent these hazards. Growth period of microbial population shall be kept as short as possible, the control of waterborne and bioflim bacteria shall be as rapid and frequent as possible and the bioside programs, intended in killing of raw material, process water and biofilm bacteria shall be evaluated more frequently.
A realistic and accurate way to control both process water and biofilm growth, as well as to evaluate biocide programs, is now available. The Finnish company SAMPLION Ltd is manufacturing and selling "Portable Microbiological Enrichment Unit", a "mini-fermentor" for 10 simultaneous tests in controlled conditions, to detect the failures of biocide programs in only hours (watesr) or days (biofilms). Some results of PMEU's paper industry applications will be published in next Spring - coming back to refer them later.
Some wrong ideas about the overdosing of biocides will also rise up frequently among publicity. Basically it is not a question of only the cubic meters of biocides consumed, however, The chose of most effective biocides for different areas of processes towards different problems, the dosing of these compounds, their type of action and some other factors play a major role when building an effective biocide program for paper machine. Overdosing of biocides is a problem only in cases, when the program does not work, and leads to the loss of money and the rise of biocide concentration in paper machine effluents.
Labels:
bacteria,
biofilm,
broke,
mineral pigment,
PMEU,
Samplion Ltd,
slime,
starch
Subscribe to:
Posts (Atom)